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Abstract The approximate core and the aspiration core are two non-empty solutions
for cooperative games that have emerged in order to give an answer to cooperative
games with an empty core. Although the approximate core and the aspiration core
come from two different ideas, we show that both solutions are related in a very
interesting way in partitioning games (or superadditive games). In fact, we prove
that the approximate core converges to the aspiration core in partitioning games (or
superadditive games).

Keywords Core · Aspiration core · Approximate core · Convergence ·
Partitioning games

Mathematics Subject Classification 91A12 · 91A40 · 91A44

1 Introduction

The partitioning games have been introduced by Kaneko and Wooders (1982), and
recently studied by Solymosi (2008), and Auriol and Marchi (2009), among others.
These games are useful in modeling situations with restricted cooperative possibilities
between the players, and therefore, only some coalitions may be formed. Certainly,
the number of coalitions is exponentially large, and it may not be feasible in practice to
consider all of them. It may be the case that some of the players in a coalition may not
get to meet or communicate with each other, so that actually only some coalitions may
be formed. In other contexts, it could be very hard to form a large coalition and then,
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522 R. P. Arribillaga

only small coalitions may play essential roles. But even if all coalitions are allowed, it
may still happen that only small coalitions play essential roles, because the game has
some special structure, as in the bridge game of Shubik (1971), and the assignment
games of Shapley and Shubik (1972).

Partitioning games are represented by a finite set N of players, an a priori set π of
coalitions of N (subsets of N ) and a payoff function v̄ on π. Only coalitions in π play
an essential role and players have to be organized through partitions taken from π .1

The fundamental concept of a cooperative equilibrium is the core, which always
assumes that the grand coalition forms. However, the power of the core concept is
limited by the fact that the non-emptiness of the core may be assured only in certain
ideal environments. Kaneko and Wooders (1982) give necessary and sufficient con-
ditions on π which guarantee that every partitioning game, associated to (N , π), has
non-empty core. These conditions are considered by the authors “extremely restric-
tive and, without some very special structure on the collection of basic coalitions, we
would not expect these conditions to bemet”. A large and current literature has studied
these conditions to provide a graph-theoretical characterization of these families; see,
for instance, Aguilera and Escalante (2010).

In this paper, we study and compare two non-empty extensions of the core that give
alternative solutions to the restrictive condition established by Kaneko and Wooders
(1982). One of the solutions is the approximate corewhich proposes the replication of
games to obtain non-empty ε-cores if the number of replications is sufficiently large.
This idea has been introduced byWooders (1983) 2 and studied inKaneko andWooders
(1982), Kovalenkov and Wooders (2003) and Wooders (2008), among others. In this
approach, the existence results are based on the fact that, with a finite number of types
of players and bounded basic group sizes, large games have non-empty approximate
cores.

The other solution concept is the aspiration core which proposes that the coop-
eration (or negotiation) of the players can be supported by overlapping structures
of coalitions (not just the grand coalition) called balanced families. The aspiration
core has been introduced by Bennett (1983); (see also, Cross 1967; Albers 1979) and
recently, studied by Bejan and Gomez (2012), Cesco (2012) and Arribillaga (2013),
among others.

Although the approximate core and the aspiration core are two solutions that have
the same motivation—to give an answer to (partitioning) games with an empty core—
they have not yet been compared and linked in the literature. The main contribution
of this paper is to show different relations between the approximate core and the
aspiration core in partitioning games. First, we show that the cores of the replicated
games, in a subsequence of the replica games, are equal to the aspiration core of the
(original) game. Second,weprove that the collection of ε-approximate cores converges
to the aspiration core when ε tends to zero. All the obtained results are completely
independent of the set π of feasible coalitions and the payoff functions.

1 (N , π, v̄) is called a game with restricted cooperation in Pulido and Sánchez (2006). In that paper the
grand coalition is always feasible (N ∈ π ) and the players are not reorganized in partitions taken from π.

2 The 1981 version of the paper is the Cowles Foundation Discussion Paper No. 612 that was published in
1983.
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Aspiration core in partitioning games 523

The paper is organized as follows. In the next section, preliminary definitions and
notation are introduced. In sect. 3, approximate core and aspiration core definitions
are presented. In sect. 4, we present the main results.

2 Definitions and notation

A game with sidepayments is a pair (N , v), where N = {1, . . . , n} is a finite set of
players and v : 2N → R is a characteristic function (with v(∅) = 0).3 The number
v(S) is interpreted as the value of the coalition S. In a game with sidepayments, all
the coalitions are feasible.

A game with sidepayments (N , v) satisfies the superadditivity property if

v(S ∪ S′) ≥ v(S) + v(S′) for all S, S′ ⊂ N such that S ∩ S′ = ∅.

A problem with partial cooperation is a pair (N , π), where N = {1, . . . , n} is
a finite set of players and π ⊂ 2N is a set of coalitions. In a problem with partial
cooperation, only coalitions in π, called basic coalitions, are feasible. For any non-
empty S ⊂ N , we call pS = {T1, . . . , Tk} a π -partition of S iff

pS ⊂π and S=
⋃

T∈pS

T with T ∩ T ′ =∅ for all T, T ′ ∈ pS such that T 
= T ′.

The set of π -partitions of S is denoted by Pπ (S).

A game in characteristic function form, (N , v), is called a partitioning game asso-
ciated to (N , π) (Kaneko and Wooders 1982) iff for some real-valued function v̄ on
π,

v(S) = max
pS∈Pπ (S)

∑

T∈pS

v̄(T ), for all non-empty S ⊂ N . (1)

Example 1 If N1 is the set of buyers and N2 is the set of sellers, (with N1 ∩ N2 = ∅),
N = N1 ∪ N2 is the set of players and the basic coalitions are the singles or the
buyer–seller pairs, i.e., π∗ = {T ⊂ N : either |T | = 1 or |T | = 2 and |T ∩ Ni | = 1
for i = 1, 2}. The partitioning games (N , v) associated to (N , π∗) coincide with
the assignment games in Shapley and Shubik (1972). There, they prove that every
assignment game has a non-empty core. Note that this proposition is independent of
the choice of v̄.

For any given N and π, GS(N , π) denotes the set of all partitioning games asso-
ciated to (N , π). Let GS(N ) denote the set of all the partitioning games with players
in N , i.e., GS(N ) = ∪π⊂2N GS(N , π). From now on, we will restrict our attention to
games in GS(N ), and (N , v) will be always a game in GS(N ).

Remark 1 It is easy to check that every game in GS(N ) is superadditive. On the other
hand, if (N , v) is a superadditive game, it can be checked that (N , v) is a partitioning

3 As usual, 2N denotes the set of all the coalitions (subsets) of N .
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524 R. P. Arribillaga

game associated to (N , π, v), i.e., (N , v) is inGS(N ).4 Therefore,GS(N ) is the class
of superadditive games.

Possible payoffs of a game (N , v) are described by vectors x ∈ Rn that assign a
payoff xi to every i ∈ N . For every S ⊂ N and x ∈ Rn , define x(S) = ∑

i∈S
xi .

One of the most studied and compelling solutions in cooperative games is the core
introduced by Gillies (1959) and defined by

C(N , v) = {x ∈ Rn : x(N ) ≤ v(N ) and x(S) ≥ v(S) ∀ S ⊂ N }.

Remark 2 The core always assumes the formation of the grand coalition. Then, the
set of feasible payoffs for the core is given by {x ∈ Rn : x(N ) ≤ v(N )}.

3 Non-empty solutions

The power of the core concept is limited by the fact that the non-emptiness of the
core cannot be always assured. Kaneko and Wooders (1982) determine necessary and
sufficient conditions on π, for every game in GS(N , π) to have a non-empty core.
Those conditions are extremely restrictive. We will study two (different) non-empty
solutions that have emerged in order to give an answer to games with an empty core.
One of these solutions is the approximate corewhich proposes the replication of games
to obtain non-empty approximate cores if the number of replications is sufficiently
large. The other solution is the aspiration core, proposing that the cooperation (or
negotiation) of the players can be supported by overlapping structures of coalitions
(not just the grand coalition) called balanced families.

3.1 The approximate core

Given the set of players N = {1, . . . , i, . . . , n}, for each positive integer number r
we define Nr = {(i, q) : i = 1, . . . , n and q = 1, . . . , r}. The set Nr is called the set
of players of the r-th replication of N .5 On the subsets of Nr , we define a function �

which associates to each S ⊂ Nr a vector inRn whose i-th entry indicates the number
of replications of the player i in S. A subset S ⊂ Nr is called a basic coalition (of Nr )
if and only if �(S) = �(S′) for some basic coalition S′ ∈ π of the set N . Let πr be
the set of all non-empty basic coalitions of Nr . The idea is that basic coalitions in Nr

are copies of the basic coalitions in N .

4 There could be other pairs (N , π) such that (N , v) is associated to (N , π) for some π ⊂ 2N .
5 N is identified with N1. If S ⊂ N ,we have that S is identified with {(i, 1) : i ∈ S}. Then, we can consider
that S is a subset of Nr .
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Aspiration core in partitioning games 525

For a given game (N , v) ∈ GS(N , π), the r-th replica game (Nr , vr ) generated
by (N , v) is defined as the (partitioning) game associated to (Nr , πr , v̄r ) where v̄r is
defined on πr by:6

v̄r (T ) = v(T ′) for all T ∈ πr where T ′ ∈ π with �(T ) = �(T ′). (2)

The next example illustrate the concepts presented previously.

Example 2 Let N = {1, 2, 3}, and let π∗ = {T ⊂ N : either |T | ≤ 2}, and let
v̄ : π∗ → R defined by

v̄(T ) = 2 |T | − 1 for all T ∈ π∗.

The partitioning game (N , v) associated to (N , π∗, v̄) is defined by

v(N ) = 4
v({1, 2}) = v({1, 3}) = v({2, 3}) = 3
v({i}) = 1 for all i ∈ N .

If N2 is the set of players of the 2-th replication of N ,

N2 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}.

In the 2-th replica π∗ is identified with set

{(1, 1)}, {(2, 1)}, {(3, 1)}, {(1, 1), (3, 1)}, {(2, 1), (3, 1)}, {(1, 1), (2, 1)}}

and

�({(i, 1)}) is a vector in R4 whose i − th entry is 1 and the others are 0, for all i ∈ N .

�({(1, 1), (3, 1)}) = (1, 0, 1)
�({(2, 1), (3, 1)}) = (0, 1, 1)
�({(1, 1), (2, 1)}) = (1, 1, 0).

If T = {(1, 1), (1, 2), (2, 1), (3, 1)} ⊂ N2, then T /∈ π∗
2 because �(T ) = (2, 1, 1).

If T̂ = {(1, 1), (1, 2)} ⊂ N2, then T̂ /∈ π∗
2 because �(T̂ ) = (2, 0, 0).

If T̄ = {(2, 1), (3, 1)} ⊂ N2, then T̄ ∈ π∗
2 because �(T̄ ) = (0, 1, 1).

In this case,

π∗
2 = {T ⊂ N2 : either |T |=1 or |T | = 2 and |{ j : (i, j) ∈ T }| ≤ 1 for i=1, 2, 3}

and
v̄2(T ) = 2 |T | − 1 for all T ∈ π∗

2 .

The 2-th replica game (N2, v2) generated by (N , v) is now the partitioning game
associated to (N2, π2, v̄2).

6 This replication is due to Kaneko and Wooders (1982).
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A payoff x for the game (Nr , vr ) is said to have the equal-treatment property, if
xiq′ = xiq

′′
for each i ∈ N and for each q ′, q ′′ ∈ {1, . . . , r}; i.e., players of the same

type are allocated the same amount. If we want to propose as solution for (N , v) some
payoffs that emerge from (Nr , vr ), it is necessary that such payoffs satisfy the equal-
treatment property. The next lemma ensures that payoffs in the core of a replicated
game have the equal-treatment property.

Lemma 1 Let (Nr , vr ) be the r−th replication of the game (N , v). If y is in the core
of (Nr , vr ), then y has the equal-treatment property.

Proof Suppose, by contradiction, that there exists y ∈ C(Nr , vr ), i∗ ∈ N , and j,
j ′ ∈ {1, 2, . . . , r} such that y(i∗, j) < y(i∗, j ′). Let p be a πr -partition of Nr such that
y(Nr ) ≤ ∑

T∈p
vr (T ). As y(T ) ≥ vr (T ) for all T ∈ p, y(T ) = vr (T ) for all T ∈ p.

Let Tj , Tj ′ ∈ p such that (i∗, j) ∈ Tj and (i∗, j ′) ∈ Tj ′ . As p is a πr -partition,
(i∗, j) /∈ Tj ′ . Let S = Tj ′ ∪ {(i∗, j)}\(i∗, j ′), then S ∈ πr and vr (S) = vr (Tj ′). As
y(i∗, j) < y(i∗, j ′), we have that y(S) < y(Tj ′) = vr (Tj ′) = vr (S) which contradicts
that y ∈ C(Nr , vr ). ��

Because of the previous lemma, we can see C(Nr , vr ) as a subset of Rn .

Given ε > 0, the ε-core (Shapley and Shubik 1966) of a game (N , v) is the set

Cε(N , v) = {x ∈ Rn : x(N ) ≤ v(N ) and x(S) ≥ v(S)−ε |S| for all S ⊂ N }.

The set of payoffs in Cε(Nr , vr ) that has the equal-treatment property is denoted
by ECε(Nr , vr ).7

Given ε > 0, the ε-approximate core of a game (N , v), denoted by ApCε(N , v),
is the set of payoffs, with the equal-treatment property, in the ε-core of some replica
of (N , v) , i.e.,

ApCε(N , v) = {x ∈ Rn : x ∈ ECε(Nr , vr ) for some integer r}.

The next proposition follows from Theorem 3.4 in Kaneko and Wooders (1982)
and Lemma 1.

Proposition 1 For all ε > 0. The ε-approximate core is non-empty for all games
(N , v).

Proof Given ε > 0, Theorem 3.4 in Kaneko and Wooders (1982) ensures
Cε(Nr , vr ) 
= ∅ if r is large enough.8 The proof of such theorem considers a game
(N , ṽ) associated to (N , v), and shows that there exists x ∈ C(Nr , ṽr ) such that
(x − ε) ∈ Cε(Nr , vr ) if r is large enough.9 Since x ∈ C(Nr , ṽr ), by Lemma 1, x has

7 The payoffs in the ε-core may not have the equal-treatment property.
8 On the class of normalized games in GS(N , π), (games (N , v) such that v(i) ≥ 0 for all i ∈ N and
v(N ) ≤ |N |) how large r is only depends on π, and it is independent of the function v. In the class of all
games GS(N , π), how large r is depends on π and v.

9 As usual, (x − ε) = (xiq − ε)(i,q)∈N×{1,...,r}.
The game (N , ṽ) is called the balanced cover of (N , v).
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Aspiration core in partitioning games 527

the equal-treatment property. Therefore, (x − ε) ∈ EC(Nr , vr ) if r is large enough.
Then, ApCε(N , v) 
= ∅. ��

3.2 The aspiration core

In order to introduce the aspiration core notion, we need some preliminary definitions.
A family of coalitions σ ⊂ 2N generates the vector x if x(S) ≤ v(S) for all S ∈ σ

and
⋃

S∈σ S = N . The aspiration core assumes that feasibility is defined by taking
into account payoffs generated by overlapping structures of coalitions called balanced
families. These are families of coalitions satisfying the following two requirements:

a) Each player has all of his “ time” distribuited in the coalitions in which he partic-
ipates.

b) The amount of “ time” that a player contributes to a given coalition is the same for
all members of that coalition.

Formally, a family of coalitions β ⊆ 2N is called a balanced family if there exists
a set of positive real numbers (λS)S∈β satisfying

∑

S∈β:
i∈S

λS = 1, for all i ∈ N .

The numbers (λS)S∈β are the balancing weights for β. A balanced family suggests
what coalitions should be formed, and its balancing weights are interpreted as the
fraction of “ time” in which each coalition is active. If S ∈ β, then each i ∈ S devotes
λS of his “ time” to S. Since

∑
S∈β:
i∈S

λS = 1, each player distributes all his “ time”

among the coalitions which he belongs to.
Let B(N ) denote the set of all balanced families of N , and let β denote an arbitrary

element in B(N ).
Given a game (N , v), define

v∗(N ) = max
β∈B(N )

∑

S∈β

λSv(S),

where (λS)S∈β is the balancing weight vector of β.

Therefore, v∗(N ) is the maximum value that N can obtain if the cooperation (or
negotiation) of the players is organized by means of balanced families. Then, the set
of feasible payoffs for the aspiration core is given by

{x ∈ Rn : x(N ) ≤ v∗(N )}.

Remark 3 If we have a partitioning game (N , v) associated to (N , π, v̄), it will be
natural to work with

vπ (N ) = max
β∈B(N ):

β⊂π

∑

S∈β

λT v̄(T )
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528 R. P. Arribillaga

instead of v∗(N ). Nevertheless, the two values are equal. Clearly, vπ(N ) ≤ v∗(N ).

Conversely, let us assume that v∗(N ) = ∑
S∈β∗ λSv(S). For each S ∈ β∗, let pS ∈

Pπ (S) such that v(S) =
∑

T∈pS

v̄(T ). Let us define β̄ = {T ⊂ N : T ∈ pS for some

S ∈ β} and λ̄T = ∑
S∈β∗:
T∈pS

λS, for each T ∈ β̄. Given i ∈ N ,

∑

T∈β̄:
i∈T

λ̄T =
∑

T∈β̄:
i∈T

⎛

⎜⎜⎝
∑

S∈β∗:
T∈pS

λS

⎞

⎟⎟⎠ =
∑

S∈β∗:
i∈S

⎛

⎜⎜⎝
∑

T∈pS :
i∈T

λS

⎞

⎟⎟⎠ =
∑

S∈β∗:
i∈S

λS = 1.

Then, β̄ is a balanced family with balancing weight vector
(
λ̄T

)
T∈β̄

and β̄ ⊂ π.

Therefore,

v∗(N ) =
∑

S∈β∗
λSv(S) =

∑

S∈β∗
λS

∑

T∈pS

v̄(T ) =
∑

T∈β̄

⎛

⎜⎜⎝
∑

S∈β∗:
T∈pS

λS

⎞

⎟⎟⎠

v̄(T )) =
∑

T∈β̄

λ̄T v̄(T ) ≤ vπ(N )

as desired.

Once we have presented the new feasibility notion, we can introduce the aspiration
core definition.

The aspiration core or balanced aspiration set (Bennett 1983; see also Cross 1967;
Albers 1979) is defined as,

AC(N , v) = {x ∈ Rn : x(N ) ≤ v∗(N ) and x(S) ≥ v(S) ∀ S ⊂ N }.

Bennett (1983) shows that AC(N , v) 
= ∅ for every game (N , v). Furthermore,
the aspiration core can be seen as a natural non-empty extension of the core because
when the latter is non-empty, both solutions coincide. For example, in the assignment
game both solutions coincide.

The following lemma ensures that the aspiration core definition is consistent with
the fact that only the basic coalitions play essential roles. The proof of this lemma
uses standard techniques, and it is omitted.

Lemma 2 If (N , v) is a game associated to (N , π, v̄), then
AC(N , v) = {x ∈ Rn : x(N ) ≤ v∗(N ) and x(T ) ≥ v̄(T ) for all T ∈ π}.

4 Main results

The following is one of the main results about replications of partitioning games.
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Theorem (Kaneko and Wooders 1982) Given (N , π), there exists an integer number
m0 such that for any positive integer number k and any (N , v) ∈ GS(N , π), the
replica games (Nr , vr ) have non-empty core, where r = km0.

This theorem states that there exists a subsequence of the generated sequence
of replica games such that every game in the subsequence has a non-empty core.
Theorem 1 below provides more information about the subsequence of non-empty
cores and the relation of such subsequence with the aspiration core of the original
game. We prove that over the subsequence of replica games where the non-emptiness
of the core is guaranteed, cores of the replica games remain constant and they are
equal to the aspiration core of the original game.

Theorem 1 Given (N , π), there exists an integer numberm0 such that for any positive
integer number k and any (N , v) ∈ GS(N , π), C(Nr , vr ) = AC(N , v) for all r =
km0.

Proof First, we will prove that for all r, C(Nr , vr ) ⊂ AC(N , v).
Let (N , v) be a game associated to (N , π, v̄). Let x be in C(Nr , vr ). Since v̄(T ) =

v̄r (T ) for all T ∈ π, x(T ) ≥ v(T ) ≥ v̄(T ) for all T ∈ π . Now, by Lemma 2, we only
need to prove that x(N ) ≤ v∗(N ).

Let x̄ = �r
i=1x .As x ∈ C(Nr , vr ), x̄(Nr ) ≤ vr (N ). So there exists a πr−partition

of Nr , pNr , such that

x̄(T ) ≤ vr (T ) for all T ∈ pNr . (3)

Let β∗ = {T ∗ ∈ π : �(T ∗) = �(T ) for some T ∈ pNr }. We will prove
that β∗ is a balanced family. Given T ∗ ∈ β∗, let hT ∗ be defined by hT ∗ =∣∣{T ∈ pNr : �(T ) = �(T ∗)}∣∣ . Let us define λT ∗ = hT∗

r . As pNr is a πr−partition,
each T ∈ pNr has at most one member of each type (since �(Tj ) = �(T ∗) with
T ∗ ∈ π ) and each pair (i, q) is in one and only one element of pNr . Then,

∑

T∈pNr :
(i,q)∈T

f or some q

1 = r for all i ∈ N .

Now, given i ∈ N , we have that,

∑

T ∗∈β∗:
i∈T ∗

λT ∗ =
∑

T ∗∈β∗:
i∈T ∗

hT ∗

r
= 1

r

∑

T ∗∈β∗:
i∈T ∗

hT ∗ = 1

r

∑

T ∗∈β∗:
i∈T ∗

⎛

⎜⎜⎝
∑

T∈pNr :
�(T )=�(T ∗)

1

⎞

⎟⎟⎠

= 1

r

∑

T∈pNr :
(i,q)∈T

f or some q

1 = 1

r
r = 1.
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530 R. P. Arribillaga

Therefore, β∗ is a balanced family of N with balancing weights (λT ∗
j
)T ∗

j ∈β .
By definition of vr and (3), we have that x(T ∗) ≤ v(T ∗) for all T ∗ ∈ β∗. Then,

x(N ) =
∑

T ∗∈β∗:
i∈T ∗

λT ∗x(T ∗) ≤
∑

T ∗∈β∗:
i∈T ∗

λT ∗v(T ∗) ≤ v∗(N ). (4)

So, we have proven that C(Nr , vr ) ⊂ AC(N , v) for all r.
The other inclusion follows from the proof of Theorem 3.2 in Kaneko andWooders

(1982) and therefore it is omitted. ��
The following limit theorem is the main result of this paper. It states that the collec-

tion of ε-approximate cores converges to the aspiration core when ε tends to zero.10

Theorem 2 For every game (N , v) in GS(N ),

lim
ε→0

ApCε(N , v) = AC(N , v).

Before proving Theorem 2, we need to establish some lemmas.

Remark 4 Note that Theorem 2 applies to every pair (N , π) and is independent of
the original payoff function v̄. Assume that we have a superadditive game (N , v). By
Remark 1, we know that (N , v) is a partitioning game, and that there exists a pair
(N , π) that generates (N , v). We can replicate (N , v) from (N , π), the numbers m0

and r∗ that appear in Theorem 1, and Kaneko and Wooders (1982) theorems will be
depending on the choice of π. However, it is important to highlight that Theorem 2
is independent of the choice of π, and this is true for every π that we consider to gen-
erate (N , v). Therefore, Theorem 2 can be presented on superadditive games without
reference to the original problem of partial cooperation.

Lemma 3 Let (Nr , vr ) be the r−th replication of the game (N , v), then vr (N )
r ≤

v∗(N ) for all r.

Proof Let pNr be a πr−partition of Nr such that vr (N ) = ∑
T∈pNr

vr (T ). Let
β∗ = {T ∗ ∈ π : �(T ∗) = �(T ) for some T ∈ pNr }. By the proof of The-
orem 1, β∗ is a balanced family of N with balancing weights λT ∗ = hT∗

r where
hT ∗ = ∣∣{T ∈ pNr : �(T ) = �(T ∗)}∣∣ , for all T ∗ ∈ β∗. Therefore,

vr (N )

r
=

∑

T∈pNr

vr (T )

r
=

∑

T ∗∈β∗
hT ∗

v(T ∗)
r

=
∑

T ∗∈β∗
λT ∗v(T ∗) ≤ v∗(N ).

��
10 The limit notion is the classical one used in set theory. Given a set X and an indexed collection of subsets
(Aε)ε∈(0,∞) of X such that Aε ⊂ Aε′ if ε < ε′,the limit of Aε when εtends to zero is,

lim
ε→0

Aε =
⋂

ε>0

Aε .
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In a similar way to the ε-core definition, we define the ε-aspiration core of a game
(N , v) as the set,

ACε(N , v) = {x ∈ Rn : x(N ) ≤ v∗(N ) and x(S) ≥ v(S) − ε |S| for all S ⊂ N }.

The next lemma presents the relation between the ε-core of a replicated game and
the ε-aspiration core of the original game.

Lemma 4 For all game (N , v) in GS(N ), all ε > 0 and all integer r,

ECε(Nr , vr ) = ACε(N , v) ∩ {x ∈ Rn : r x(N ) ≤ vr (Nr )}.

Proof Since (N , v) is in GS(N ), there exists (N , π, v̄) such that (N , v) is associated
to (N , π, v̄). Suppose x is in ECε(Nr , vr ). Then,

r x(N ) ≤ vr (Nr ). (5)

We will prove that x ∈ ACε(N , v). By Lemma 3 and (5),

x(N ) ≤ v∗(N ). (6)

As x ∈ ECε(Nr , vr ), then

x(T ) ≥ v(T ) − ε |T | for all T ∈ π.

Given S ⊂ N , let pS ∈ Pπ (S) such that, v(S) =
∑

T∈pS

v̄(T ). Then,

v(S) =
∑

T∈pS

v̄(T ) ≤
∑

T∈pS

v(T ) ≤
∑

T∈pS

x(T ) + ε |T | =
∑

T∈pS

x(T ) +
∑

T∈pS

ε |T |

= x(S) + ε |S| . (7)

Therefore, by (6) and (7), x ∈ ACε(N , v).

To see the other inclusion, let x be such that r x(N ) ≤ vr (Nr ). If x̄ = �r
i=1x, then

x̄(Nr ) ≤ vr (Nr ). (8)

Now, let us suppose x is in ACε(N , v). If x̄ = �r
i=1x, then x̄(T ) = x(T ) ≥

v(T ) − ε |T | for all T ∈ π. By definition of (Nr , vr ),

x̄(T ) ≥ vr (T ) − ε |T | for all T ∈ πr . (9)

Therefore, by (8), (9) and Lemma 2.1 of Kaneko and Wooders (1982), x ∈
ECε(Nr , vr ). ��
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Remark 5 From the previous lemma, the following three statements hold:

(i) ECε(Nr , vr ) is always included in ACε(N , v).

(ii) ACε(N , v) is always non-empty but in cases in which vr (Nr )
r < v∗(N ), we have

that ECε(Nr , vr ) is empty.
(iii) By Theorem 1, there is an integer number m0 such that for any positive integer

number k, vr (Nr )
r = v∗(N )−ε |N | for all r = km0. Then, ECε(Nr , vr ) remains

constant satisfying ECε(Nr , vr ) = ACε(N , v) for all r = km0, i.e., over a
subsequence of replica games, the payoffs with the equal-treatment property
in the ε-cores of the replica games remain constant, and they are equal to the
ε-aspiration core of the original game.

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. By Lemma 4, ECε(Nr , vr ) ⊂ ACε(N , v) for all integer r, for
all ε > 0. Then, ApCε(N , v) ⊂ ACε(N , v) for all ε > 0. By Remark 5 (i i i), there
exists an integer numberm0 such that for all positive integer number k, ECε(Nr , vr ) =
ACε(N , v) for all r = km0. Therefore,

ApCε(N , v) = ACε(N , v) for all ε > 0.

As ApCε1(N , v) ⊂ ApCε2(N , v) if ε1 ≤ ε2, we have

lim
ε→0

ApCε(N , v) =
⋂

ε>0

ApCε(N , v) =
⋂

ε>0

ACε(N , v) = AC(N , v).

��
Remark 6 We have proven that

ApCε(N , v) = ACε(N , v) for all ε > 0.

So that, the ε-approximate core and the ε -aspiration core coincide for all ε > 0 .

The next last theorem shows the “closedness” between ε-cores of replicated games
and the ε-aspiration core of the original games if the number of replications is large
enough.

Theorem 3 For any (N , v) ∈ GS(N , π) and any ε > 0, there is an integer r∗ such
that for all r ≥ r∗,

ECε(Nr , vr ) ⊂ ACε(N , v) and
ACε(N , v)\ECε(Nr , vr ) ⊂ {x ∈ Rn : v∗(N ) − ε < x(N ) ≤ v∗(N )}. (10)

Proof The first inclusion follows from Lemma 4. Let us see the second inclusion.
Given ε > 0, by the proof of Theorem 3.4 in Kaneko and Wooders (1982), there
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exists r∗ such that 11

rv∗(N ) − vr (Nr ) < rε for all r ≥ r∗. (11)

Now, if r ≥ r∗ and x ∈ ACε(N , v)\ECε(Nr , vr ), thenvr (Nr ) < r x(N ) ≤ rv∗(N )

(see Lemma 4). Then, by (11), v∗(N ) − ε < x(N ) ≤ v∗(N ). ��
Let us see some implications of Theorem 3. First, for small ε > 0, the ε-aspiration

core of a (original) game is very “closed” to the set of payoffs, with the equal-treatment
property, in the ε-core of (Nr , vr ) when r is large enough.

Second, it is clear that,12

AC(N , v) − {(ε, ε, . . . , ε)} ⊂ACε(N , v) ∩ {x ∈ Rn : x(N ) ≤ v∗(N ) − ε}.

So, by (10), the payoffs in the aspiration core of the (original) game “minus” ε are
in the ε-core of the r -th replicate game if r is large enough.

Because of previous results, we could say that the ideas of approximate core and
aspiration core are in complete accordance. Nevertheless, the aspiration core notion
has the advantage that it does not need to introduce the notions of replicated games
and ε-cores; it only needs to calculate the set of feasible payoffs that is obtained when
the players are organized by balanced families, as well as to select those payoffs that
are not blocked by the basic coalitions.
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