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Abstract

In the knapsack problem a group of agents wants to �ll a knapsack with several
goods. Two issues should be considered. The �rst issue is to decide optimally the
goods selected for the knapsack. This issue has been studied in many papers from
the literature of Operations Research and Management Science. The second one is to
divide the total revenue among the agents. This issue has been studied in few papers,
including this one. For each knapsack problem we consider three cooperative games
associated. One of them (the pessimistic) was already considered in the literature.
The other two (realistic and optimistic) are de�ned in this paper. The pessimistic
and the realistic game have a non-empty core but the core of the optimistic could be
empty. Later, we follow the axiomatic approach. We propose two rules. The �rst
one is based on the optimal solution of the knapsack problem. The second one is the
Shapley value of the so called optimistic game. We o¤er axiomatic characterizations
of both rules.
Keywords: Knapsack problem; axiomatic; cooperative games.

1 Introduction

A mountaineer is planning a mountain tour with a knapsack, which has a limited size.
Thus, he must decide what objects to carry in the backpack. The idea is to select the most
important things, given its limited size. This is a classical example of the so called knapsack
problem. In general we have a �nite set of goods which has to be packed in a knapsack
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of limited size. Each good j has a pro�t pj and a size wj: We should select a subset of
goods whose total size does not exceed the size of the knapsack and whose total pro�t is a
maximum.
The knapsack problem has been applied to various real-world decisions. Examples (see

Pisinger and Toth (1998)) include investments (deciding how to split the investment of a
�xed amount of money between several business projects) and cargo airlines (deciding how
to �ll an airplane given the demand of the customers). Other applications (see Bretthauer
and Setty (2002)) include �nancial models, production and inventory management, strati-
�ed sampling, the optimal design of queuing network models in manufacturing, computer
systems, and health care.
The most popular formulation is the so called 0-1 knapsack problem. There is a �nite

number of goods (one unit of each good) and it must be decided which ones are selected
for the knapsack. The goods can either enter completely (1) or not at all (0). Since the
number of goods is �nite, there is an optimal solution (the one that maximizes the sum
of the pro�ts of the goods included in the knapsack). The �rst issue addressed is the
computational complexity of the optimal solution. Unfortunately, this problem is NP hard
(see, for instance, Martello et al (2000)). Thus, the optimal solution must be approximated
by some algorithms.
There are more general formulations of the knapsack problem. They include the con-

tinuous knapsack problem, where fractions of each good can be included; the bounded
knapsack problem, where there can be several copies of each good; the d-dimensional knap-
sack problem, where there are several constraints (for instance weight and volume) on �lling
the knapsack; the multiple knapsack problem, where there are several knapsacks instead of
only one; the multiple choice knapsack problem, where there are several types of object and
one object of each type must be chosen; and the non-linear knapsack problem, where the
objective function and the constraint are non-linear. Again, the main issue addressed by
this literature is how to compute the optimal solution. Pisinger and Toth (1998), Martello
et al (2000), and Kellerer et al (2004) survey this literature.
In all the literature mentioned above it is assumed that there is a single agent involved

in the situation. Of course, such agent only cares about what is the optimal solution.
Nevertheless in many situations several agents could be involved. As in the classic situation
we have a knapsack of limited size which has to be �lled with several goods of a given size.
But now agents could have di¤erent preferences over the importance of the goods. We
assume that a group of agents (N) decide which goods (from a set M) should be included
in a knapsack of �xed size W . Each good j 2 M has a �xed size wj. The preferences of
the agents for the goods are heterogeneous and are modeled by a vector p where for each
i 2 N and j 2 M , pij 2 R+ denotes the utility obtained by agent i when one unit of good
j is included in the knapsack. We assume that the utility of each agent is linear in the
quantities consumed. The goods could be public (if pij > 0 for any agent i; then good j
could be considered as a public good because every agent bene�t from it) or private (if we
take pij > 0 for agent i and p

k
j = 0 when k 6= i; then good j could be considered as a private

good of agent i):
Now we can de�ne the pro�t of good j (the pj of the classical problem) as

P
i2N

pij. We also
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assume (as in the classical model) that agents will select the goods maximizing the total
utility (the sum of the utility of all agents). Thus, the computation of the optimal solution
(or the approximation obtained) is the �rst part of the problem. The second part is to
divide the cost (or bene�ts) among the agents. The �rst part is mainly studied in operations
research literature, while the second part is also studied in economics. For instance, in the
minimum cost spanning tree problem, Bird (1976), Kar (2002), Dutta and Kar (2004),
Tijs et al (2006), Bergantiños and Vidal-Puga (2007a), Bogomolnaia and Moulin (2010),
and Trudeau (2012) propose several rules for allocating the cost of the optimal solution
among the agents. Borm et al (2001) give a survey focusing on connection problems,
routing (Chinese postman and travelling salesman), scheduling (sequencing, permutation,
assignment), production (linear production, �ow), and inventory.
As far as we know, the paper by Darmann and Klamler (2014) is the only one in which

this second part is studied in the knapsack problem. They focus on the continuous knapsack
problem, where the optimal solution could be computed in polynomial time. They consider
the following: "the goal is to divide the cost of the optimally packed knapsack among the
individuals in a fair manner. In this paper, we assume that every unit of weight imposes
a cost of one, and therefore the total cost of the knapsack is equal to the weight constraint
W". They then de�ne a family of rules which is characterized by several properties. They
also study a particular rule in such family, that divides the cost associated with each good
equally among the agents approving that good.
Our paper also considers the second part of the problem, but our approach is di¤erent.

Darmann and Klamler (2014) consider the case where agents either approve or disapprove
each good. Namely, for each i and j, pij = 1 when agent i approves good j and p

i
j = 0 when

agent i disapproves good j. Moreover, our main goal is to divide the total utility generated
by the optimal knapsack among the agents.
We �rst clarify the di¤erence between the two approaches with a trivial example. Con-

sider the knapsack problem with three agents (1, 2, and 3) and two goods (a and b). The size
of the knapsack is 1 and the size of each good is also 1. Good a is approved by agents 1 and
2 and good b is approved by agent 3. In our model p1a = p

2
a = p

3
b = 1 and p

1
b = p

2
b = p

3
a = 0:

Including good a in the knapsack results in an aggregate utility of 2 (agents 1 and 2 enjoys
an utility of 1 and agent 3 enjoys 0). Including good b results in an aggregate utility of
1 (agent 1 and 2 enjoys an utility of 0 and agent 3 enjoys 1). The optimal solution is to
include good a in the knapsack. In the rule �e of Darmann and Klamler (2014) agents
1 and 2 pay 0.5 and agent 3 pays nothing. This means that agent 1 and 2 obtain some
earnings (the utility that they get from good a minus the amount that they pay) whereas
agent 3 obtains nothing (he receives nothing and pays nothing). In our case agents must
decide how to divide the utility generated by the optimal solution (2 in this case) among
the agents. Thus, we also consider the possibility that agent 3 is compensated by agents
1 and 2 (because good b is not included) and thus obtains a pro�t. Actually, one of the
allocations that we consider does this.
In this paper we follow a cooperative approach and study how to divide the total utility

among the agents. Thus, we implicitly assume that agents who include many of "their
goods" in the knapsack could compensate those agents who include few of "their goods" in
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order to obtain a more fair allocation.
In the literature there is a way of associating a cooperative game with each knapsack

problem (see, for instance, Kellerer et al (2004)). The value of a coalition S is de�ned as
the utility obtained by agents of that coalition when the knapsack is �lled in the worst
way for S. We call this game the pessimistic game. It is known that the core of this game
is non-empty and contains the allocation induced by the optimal solution. We introduce
two alternative cooperative games: the optimistic game and the realistic game. In the
optimistic game the value of a coalition S is de�ned as the utility obtained by the agents
of that coalition when the knapsack is �lled in the best way for S. It is easy to see that the
core of the optimistic game could be empty. In the realistic game the value of a coalition
S is de�ned as the utility obtained by agents of that coalition when agents in NnS �ll the
knapsack in the best way for NnS. We prove that the realistic game has a non-empty core
containing the allocation induced by the optimal solution.
We then follow the axiomatic approach: a knapsack rule is a function that for each

knapsack problem selects the goods to be included in the knapsack and the way in which
the total utility generated by those goods is divided among the agents. We introduce
several properties of rules and we discuss some relationships between the properties. One
of them is core selection, which says that the allocation should be in the core of the realistic
game. In several knapsack problems core selection implies that some agents could receive
0, which seems a little unfair. Thus, we also consider the securement property (inspired
by Moreno-Ternero and Villar (2004)), which guarantees all agents a minimum amount.
Securement says that each agent must receive at least (1=n) the amount that he obtains
when the knapsack is assigned to him. Unfortunately there is no rule that satis�es both
properties. Thus we consider two rules: one satisfying each of the properties.
We �rst consider the rule induced by the optimal solution. This rule allocates to each

agent the utility obtained by that agent under the optimal solution. It satis�es core selection
but fails securement. We present three characterizations of this rule. In the �rst one we use
core selection and no advantageous splitting. In the second one we use e¢ ciency, maximum
aspirations, independence of irrelevant goods, and composition up. In the third one we use
e¢ ciency, maximum aspirations, and no advantageous splitting.
We then consider the Shapley value of the optimistic game, which satis�es securement

but fails core selection. We characterize it with e¢ ciency and equal contributions.
The rest of the paper is organized as follows. In Section 2 we formally introduce the

knapsack problem. In Section 3 we study the three cooperative games associated with the
knapsack problem. In Section 4 we introduce the properties, the rules, and the axiomatic
characterizations. In Section 5 we present some concluding remarks. In the Appendix we
present some omitted proofs of our results. Finally, we give the list of references.
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2 The knapsack problem

In the knapsack problem a set of agents want to include some goods in a knapsack of a
given size.
We assume that the set of potential agents is in�nite. Then, there exists an in�nite set

N such that N � N :
We focus on the continuous knapsack problem, where it is assumed that goods are

perfectly divisible. Then we can select fractions of each good to be included in the knapsack.
A knapsack problem is de�ned as a 5-tuple P = (N;M;W;w; p) where

� N = f1; :::; ng denotes a set of agents.

� M = fg1; :::; gmg denotes the set of goods.

� W 2 R+ is the size of the knapsack.

� w = fwjgj2M where for each j 2M; wj denotes the size of good j:

� p =
�
pij
	
i2N;j2M where for each i 2 N and j 2 M; pij 2 R+ denotes the utility that

agent i obtains for each unit of good j that is included in the knapsack.

Darmann and Klamler (2014) consider the particular case where pij 2 f0; 1g for each
i 2 N; j 2M: Namely, agents approve or disapprove each good.

We introduce some notation used later. Given a knapsack problem P and M 0 � M we
denote by PM

0
the restriction of P to goods in M 0: Namely,

PM
0
=
�
N;M 0;W; fwjgj2M 0 ;

�
pij
	
i2N;j2M 0

�
:

Given a knapsack problem P and N 0 � N we denote by PN
0
the restriction of P to

agents in N 0: Namely,
PN

0
=
�
N 0;M;W;w;

�
pij
	
i2N 0;j2M

�
:

For each j 2M;
pj =

X
i2N

pij (1)

is a measure of the importance of good j for the set of agents.
For each S � N and j 2M; pSj =

X
i2S
pij: Notice that for each j 2M; pNj = pj:

For each i 2 N; we denote pi =
�
pij
�
j2M the vector of utilities associated with agent i:

The interesting case arises when we can not include in the knapsack all goods, namely,
W <

X
j2M

wj: The case W �
X
j2M

wj is solved easily by including all goods in the knapsack.

We assume in the rest of the paper that W <
X
j2M

wj:
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We say that x = (xj)j2M 2 RM is a feasible solution for P if xj 2 [0; 1] for each j 2M
and

X
j2M

wjxj = W . We denote by FS (P ) the set of feasible solutions for P: As xj 2 [0; 1];

we assume that one unit of each good is at most admitted. Since W <
X
j2M

wj; FS (P ) has

many elements.
Each feasible solution x induces a vector of utilities u (x) = (ui (x))i2N given by the

goods we have included in the knapsack. For each feasible solution x and each i 2 N;

ui (x) =
X
j2M

pijxj:

We assume that agents choose the goods to be included in the knapsack. They also
decide the way in which the total utility generated by the selected goods is divided among
them. For any problem P the set of feasible allocations is de�ned as

FA (P ) =

(
(yi)i2N 2 RN+ :

X
i2N

yi =
X
i2N

ui (x) for some x 2 FS (P )
)
:

The �rst question addressed in the literature (mainly from operations research) is to
select the goods to be included in the knapsack in such a way that the aggregated utility
of the agents is maximized. Formally,

max
x2FS(P )

X
i2N

ui (x) : (2)

In what follows, we assume, without loss of generality, that the goods are sorted in such
a way that1

p1
w1
� ::: � pm

wm
:

This problem has at least one optimal solution. One of them is x� (P ) =
�
x�j (P )

	
j2M

de�ned as

x�j (P ) :=

8>>><>>>:
1 if j = 1; :::; s� 1

1

ws

 
W �

s�1X
k=1

wk

!
if j = s

0 if j = s+ 1; :::;m

(3)

where s is de�ned by

s�1X
k=1

wk < W �
sX
k=1

wk:

1This ordering of the goods is not necessarily unique because ties are possible.
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When no confusion arises we write x� instead of x� (P ) : We will denote by X�(P ) (or
X�) the set of all optimal solutions in P:

If we assume that p1
w1
> ::: > pm

wm
; we can guarantee that the previous problem has a

unique optimal solution.

We denote by P the class of all knapsack problems and by P� the class of knapsack
problems where p1

w1
> ::: > pm

wm
.

3 Knapsack cooperative games

In this section we associate with each knapsack problem three cooperative games with
transferable utility known as pessimistic, optimistic, and realistic, depending on how the
value of a coalition S is de�ned.
The pessimistic game has been already studied in the literature (see, for instance,

Kellerer et al: (2004)) and the value of a coalition S is computed in the worst scenario
for coalition S: This is the most standard approach and has been used in many di¤erent
kind of problems. In this case it is assumed that the knapsack is �lled including the goods
with smaller aggregated utility for agents in S: The optimistic game, inspired in Bergan-
tiños and Vidal-Puga (2007b) and Bergantiños and Lorenzo (2008), is in some sense dual
of the pessimistic game because the value of a coalition S is computed in the best scenario
for coalition S: Thus, it is assumed that the knapsack is �lled including the goods with
larger aggregated utility for agents in S: The realistic game tries to be a kind of compro-
mise between the pessimistic and the optimistic game. We take a pessimistic approach in
the sense that we allow coalition NnS to �ll the knapsack in the best way for them. We
take an optimistic approach in the sense that, among all the allocations that give a larger
aggregated utility to NnS; coalition S can select the one that gives a larger aggregated
utility to S:
We study the core of such games. The core of pessimistic and realistic games is always

non-empty whereas the core of the optimistic game could be empty.

A cooperative game with transferable utility (brie�y, a TU game) is a pair (N; v)
where v : 2N ! R satis�es v (?) = 0: When no confusion arises we write v instead of
(N; v) :
The core of a TU game v is de�ned as

c (v) =

(
x 2 RN :

X
i2N

xi = v (N) and for each S � N;
X
i2S
xi � v (S)

)
:

In the pessimistic approach we assume that the knapsack is �lled in the worst way for
any proper coalition S  N and all agents agree to �ll the knapsack optimally. Formally,
for each knapsack problem P we de�ne the pessimistic game vpP where,
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vpP (S) =

8><>:
minx2FS(P )

P
i2S ui (x) if S  N

max
x2FS(P )

X
i2N

ui (x) if S = N

9>=>; :
When no confusion arises we write vp instead of vpP :

In the optimistic approach we assume that agents in S can �ll the knapsack however
they want. Formally, for each knapsack problem P we de�ne the optimistic game voP
where for each S � N;

voP (S) = max
x2FS(P )

X
i2S
ui (x) :

When no confusion arises we write vo instead of voP :

In the realistic approach we assume that coalition S chooses its best allocation among
those that optimize the space of the knapsack for the coalition NnS. Let X�(PNnS) be the
set of optimal solutions of the problem PNnS. For each knapsack problem P we de�ne the
realistic game vrP where for each S � N;

vrP (S) = max
x2X�(PNnS)

X
i2S
ui (x) :

When no confusion arises we write vr instead of vrP :

Remark 1 It is obvious that for each problem P and each S � N; vp(S) � vr(S) � vo(S)
and vp(N) = vr(N) = vo(N). Then,

c(vo) � c(vr) � c(vp):

Example 1 Let P be such that N = f1; 2; 3g, M = fa; b; cg, W = 2 and wj = 1 for all
j 2M: Besides the vector p satis�es the following conditions.

� Agent 1 is interested in good a but not in the others. Namely, p1a > 0 and p1j = 0
otherwise.

� Agents 2 and 3 prefer b to c and they are not interested in good a: Furthermore,
they enjoy good c more than agent 1 enjoys good a: Namely, for each agent i 6= 1,
pib > p

i
c > p

1
a and p

i
a = 0:

� Agent 2 is more interested in objects of Mn fag than agent 3. Namely, p2j > p3j ; for
each j 2 fb; cg :
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We now compute the three games. We detail the computation for coalition f2; 3g. The
worst feasible solution for agents 2 and 3 is to include goods a and c: Thus, vp (2; 3) = p2c+p

3
c :

The best feasible solutions for agent 1 are fag ; fa; bg ; and fa; cg : Among them, agents 2
and 3 prefer fa; bg. Then, vr (2; 3) = p2b + p3b : The best feasible solution for agents 2 and 3
is to select goods b and c: Then, vo (2; 3) = p2b + p

3
b + p

2
c + p

3
c :

T vp (T ) vr (T ) vo (T )
f1g 0 0 p1a
f2g p2c p2b + p

2
c p2b + p

2
c

f3g p3c p3b + p
3
c p3b + p

3
c

f1; 2g p1a + p
2
c p2b + p

2
c p2b + p

2
c

f1; 3g p1a + p
3
c p3b + p

3
c p3b + p

3
c

f2; 3g p2c + p
3
c p2b + p

3
b p2b + p

3
b + p

2
c + p

3
c

N p2b + p
3
b + p

2
c + p

3
c p2b + p

3
b + p

2
c + p

3
c p2b + p

3
b + p

2
c + p

3
c

The core of the pessimistic game vp is non empty and contains u (x0) for all x0 2 X�

(see, for instance, Kellerer et al: (2004)).

The core of the optimistic game vo could be empty. In Example 1, as vo (f1g)+vo (f2g)+
vo (f3g) > vo (N) ; then c (vo) = ?: 2

We now prove that the core of the realistic game vr is non-empty by showing that u (x�)
belongs to such core.

Theorem 1 For each knapsack problem P; u (x0) 2 c (vr) for all x0 2 X�:

Proof. Let P be a problem: Assume, to obtain a contradiction, that there exists x0 2 X�

such that u (x0) =2 c(vr): Then, it exists S � N such that

vr(S) >
X
j2M

pSj x
0
j

:
Let x 2 X�(PNnS) be such that

vr(S) =
X
j2M

pSj xj

As x 2 X�(PNnS);
X
j2M

p
NnS
j xj �

X
j2M

p
NnS
j x0j: Then,

X
i2N

ui (x) =
X
i2N

X
j2M

pijxj =
X
j2M

pSj xj +
X
j2M

p
NnS
j xj >

X
j2M

pSj x
0
j +

X
j2M

p
NnS
j x0j

=
X
j2M

pjx
0
j =

X
i2N

ui (x
0) ;

2As vo (f1g) + vo (f2g) + vo (f3g) > vo (N) ; then c (vo) = ?:
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which contradicts that x0 2 X�.

The next example shows that the core of vr could have other elements besides those
that are induced for the optimal solutions (i.e. elements outside of fu (x0) : x0 2 X�g).

Example 2 Let P be such that N = f1; 2; 3g; M = fa; b; c; dg, W = 5, wa = wb = wd = 2,
wc = 1; p

1
d = 0:7; p

1
a = p

1
b = p

1
c = 0, p

2
a = p

2
b = 1; p

2
c = p

2
d = 0, p

3
a = 1; p

3
b = 0:9, p

3
c = 0:8;

and p3d = 0: Then, pa = 2; pb = 1:9; pc = 0:8, pd = 0:7;

pa
wa
=
2

2
>
pb
wb
=
1:9

2
>
pc
wc
=
0:8

1
>
pd
wd
=
0:7

2
:

The optimal solution is x� = (1; 1; 1; 0) : Namely, we include in the knapsack a; b and c:
Now u (x�) = (0; 2; 2:7) :
vr (1) = 0; vr (2) = 2; vr (3) = 1:9; vr (1; 2) = 2; vr (1; 3) = 2:7; vr (2; 3) = 3:45;

and vr (N) = 4:7: Then vr has many core elements di¤erent from u (x�) : For instance,
(0:7; 2; 2) :

4 Knapsack rules and properties

In this section we introduce several properties of rules. We discuss some relationships
between the properties. Core selection says that we must select an allocation in the realistic
core. Rules selecting allocations in the core could be unfair because agents who want goods
which are not in great demand (those with small pj

wj
) could receive zero. Thus, we consider

the property of securement, which says that each agent must receive a minimum amount.
Unfortunately there is no rule that satis�es both properties.
We then introduce two rules. The �rst one, based on the optimal solution, satis�es core

selection. The second one, based on the Shapley value, satis�es securement. We study the
properties satis�ed by each rule. We also provide several axiomatic characterizations of
both rules.

A rule is a function � assigning to each problem P a pair � (P ) = (g (P ) ; f (P )) where
g (P ) 2 FS (P ) and

P
i2N

fi (P ) =
X
i2N

ui (g (P )) : Notice that g (P ) denote the goods we

include in the knapsack and f (P ) denotes the way in which the total utility generated by
g (P ) is divided among the agents.

We now introduce several properties of rules and we discuss some relationships between
the properties.

E¢ ciency says that f (P ) is not Pareto dominated in the set of feasible allocations
FA (P ).
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E¢ ciency (ef). For each problem P;
P
i2N

fi (P ) = max
x2FS(P )

X
i2N

ui (x) :

In P e¢ ciency says that g (P ) 2 X�. In P� e¢ ciency means that g (P ) = x�:

Symmetry says that if two agents give the same utility to each good, then both receive
the same allocation.
Symmetry (sym). For each problem P and each i; i0 2 N such that pi = pi

0
; then

fi(P ) = fi0(P ):

Monotonicity says that if the valuation of agent i to some goods increases, then the
allocation to agent i can not decrease.
Monotonicity (mon). Consider two problems P = (N;M;W;w; p) and P 0 = (N;M;W;w; p0)

such that there exists i 2 N satisfying p0ij � pij for all j 2 M and p0kj = p
k
j for all j 2 M

and k 2 Nn fig : Then, fi (P 0) � fi (P ) :

Dummy says that if some agent is not interested in any good, then he receives nothing.
Dummy (dum). For each problem P and each i 2 N such that pij = 0 for each j 2M;

then fi(P ) = 0:

Core selection says that the allocation proposed by the rule should belong to the core
of the problem. Because of the de�nitions, we think that vr (S) represents better what
agents of S could obtain by themselves than vp (S) or vo (S) : Thus, we select the core of
the realistic game for de�ning this property.
Core selection (cs). For each problem P; f (P ) 2 c (vr) :
It is clear that core selection implies e¢ ciency, because a feasible allocation, f (P ) ; in

the core satis�es that,
P

i2N fi (P ) = v
r (N) :

Assume that we remove a good not selected by the optimal solution, then the allocation
proposed by the rule does not change. This property is inspired in the well known principle
of independence of irrelevant alternatives (used, for instance, in bargaining problems by
Nash (1950)).
Independence of irrelevant goods (iig). Let P be a problem and j 2M satisfying

that xj = 0 for any optimal solution x: Then, � (P ) = �
�
PMnfjg� :

Composition up says that we can �ll the knapsack in one step or, �rst �ll some part of
the knapsack and later the remaining. This property has been used in several economics
problems. See for instance the surveys of Thomson (2003, 2015) about bankruptcy prob-
lems. Darmann and Klamler (2014) also use this property.
For each problem P = (N;M;W;w; p) ; W1 � W and x 2 [0; 1]M we de�ne the problems

P (W1) = (N;M;W1; w; p) and

P (W �W1; x) = (N;Mx;W �W1; wx ; px)

11



where

Mx = fj 2M : xj < 1g ;
(wx)j = wj (1� xj) for each j 2Mx; and

(px)
i
j = pij(1� xj) for each i 2 N and j 2Mx

Composition up (cu). For each problem P and each W1 � W , if x = g (P (W1))

gj (P ) =

�
gj (P (W1)) j =2Mx

gj (P (W1)) + gj (P (W �W1; x)) (1� gj (P (W1))) j 2Mx

fi (P ) = fi (P (W1)) + fi (P (W �W1; x)) for all i 2 N:

We now introduce two properties closely related. There are actually several papers in
which these two properties appear as a single property. No advantageous merging means
that no group of agents has incentives to pool their utility and to present themselves as a
single agent. No advantageous splitting means that no agent has incentives to divide his
utility and to present himself as a group of agents.

Let P = (N;M;W;w; p) and P 0 = (N 0;M;W;w; p0) be such that N � N 0 and there
exists i 2 N with pi = p0i +

P
k2N 0nN

p0k and pk = p0k for all k 2 Nn fig :

No advantageous merging (nam). Then,

fi (P
0) +

X
k2N 0nN

fk (P
0) � fi (P ) :

No advantageous splitting (nas). Then,

fi (P
0) +

X
k2N 0nN

fk (P
0) � fi (P ) :

Darmann and Klamler (2014) consider the property of pairwise merge-and-split-proofness,
which is related in its motivation with nam and nas. Both properties are inspired by the
property of strategy-proofness introduced in O�Neill (1982). Actually we de�ne it in the
same way as shown in Thomson (2003, 2015). There are two di¤erences between pairwise
merge-and-split-proofness and nam + nas. First, when one agent is divided into several
(or several join together as a single agent), in Darmann and Klamler (2014) each agent
must approve di¤erent goods. Since our model is more general we allow di¤erent agents to
approve the same good. Second, in Darmann and Klamler (2014) the property says that
agents who do not merge or split should not be a¤ected. In our case (as in the bankruptcy
problem) we say that agents that merge or split are not better o¤.

12



The idea of the following property is to set an upper bound on the utility received by
each agent. In our case, each agent can receive no more than the utility that he receives
when he can use the whole knapsack.
For each problem P and each i 2 N we de�ne the maximum aspiration of agent i as

MAi (P ) = max
x2FS(P )

ui (x) : Notice that MAi (P ) = vo (i) :

Maximum aspirations (ma) : For each problem P and each i 2 N; fi (P ) �MAi (P ) :

The idea of the following property is the dual of the previous one. We try to guarantee
each agent a minimum amount. In our case each agent must receive at least (1=n) the
utility that he obtains when the knapsack is assigned to him. Following Moreno-Ternero
and Villar (2004) we call it securement, as they do for the case of bankruptcy problems.
For each problem P and each i 2 N we de�ne the secure allocation of agent i as

SEi (P ) =
1

n
max

x2FS(P )
ui (x) :

Notice that SEi (P ) =
vo(i)
n
:

Securement (se) : For each problem P and each i 2 N; fi (P ) � SEi (P ) :

Equal contributions is a principle widely used in the literature since Myerson (1980)
introduced it in TU games. It says that if agent i leaves the problem, the change in the
allocation of agent k coincides with the change in the allocation to agent i when agent k
leaves the problem.
Equal contributions (ec). For each problem P and each i; k 2 N;

fi (P )� fi
�
PNnfkg

�
= fk (P )� fk

�
PNnfig

�
:

All the above properties can be considered as desirable for a rule, but clearly there
could be incompatibilities between them. For example, if we restrict our attention to
rules satisfying core selection (securement) we must leave aside securement (core selection)
because the two properties are incompatible. We also prove that under the dummy and
e¢ ciency properties, independence of irrelevant goods and securement are incompatible. In
the proposition below we study these relationships between the properties.

Proposition 1 (1) There is no rule satisfying core selection and securement.
(2) Let � be a rule satisfying dummy and e¢ ciency. Then, � does not satisfy indepen-

dence of irrelevant goods or securement.

Proof. (1) Assume that � = (g; f) is a rule that satis�es cs: Consider Example 1. For each
i 2 Nn f1g ; vr (i) =

P
j2M

pijx
�
j = ui (x

�) because x�Nnfig = x� = (0; 1; 1) : Now,

vr (N) =
X
i2N

ui (x
�) =

X
i2Nnf1g

X
j2M

pijx
�
j =

X
i2Nnf1g

vr (i) :

13



Then, c (vr) = (ui (x�))i2N : Since � satis�es cs; f1 (P ) = u1 (x
�) = 0: But f1 (P ) = 0 <

SE1 (P ) =
p1a
3
. Then, � does not satisfy se.

(2) Let P be such that N = f1; 2g ; M = fa; bg ; W = 1; wa = wb = 1; p
1
a = 1; p

2
b = 0:9

and p1b = p2a = 0: Now vo (1) = 1; vo (2) = 0:9; and vo (1; 2) = 1. Then, SE1 (P ) = 0:5,
SE2 (P ) = 0:45 and x� = (1; 0) : If � satis�es dum; f2

�
P fag

�
= 0: Now, assume that �

satis�es ef; then g(P ) = x�: Then, if � satis�es iig; f2 (P ) = f2
�
P fag

�
= 0 (since that

gb(P ) = 0): Then, as f2 (P ) = 0 < 0:45 = SE2 (P ) ; � does not satisfy se.

Core selection is a quite standard property in the literature. Nevertheless, allocations
in the core could be very unfair. In the knapsack problem this could also happen. For
instance, in Example 1 there is only one core allocation, which gives 0 to agent 1. Thus, if
we try to �nd a fair allocation sometimes it is better to look outside the core. For instance,
in TU games the Shapley value (Shapley, 1953) could be outside the core.
We think that securement is a nice fairness property because it guarantees that all non-

dummy agents receive something. For instance, in Example 1 it says that agent 1 receives
something.
By Proposition 1 core selection and securement are incompatible. Since we consider

both properties to be interesting, we study two rules in the paper: One satisfying core
selection and the other satisfying securement.

4.1 The rule induced by the optimal solution

In this section we study a rule that satis�es core selection. We focus on the rule induced
by the optimal solution. We �ll the knapsack in the optimal way and each agent receives
the utility given by the knapsack, i.e. there are no transfers between agents. A general
knapsack problem can have several optimal solutions, at this section we restrict our study
to P�; where the optimal solution is unique and then well de�ned. When we consider rules
on P�; the properties de�ned in the previous section need to ask the additional requirement
that each problem P; P 0; PMnfjg; P (W1); P (W �W1; x) and PNnfig must be in P�. We
study the properties satis�ed by this rule and we give several axiomatic characterizations.

Given P 2 P�, let x� denote the unique optimal solution of P . Making an abuse of
notation we denote the rule induced by x� also as x�: Namely, let x� be the rule de�ned as
g (P ) = x� and fi (P ) = ui (x�) for all i 2 N:
The optimal solution has been used by Darmann and Klamler (2014) for de�ning a

rule. In that paper, the cost associated with each good, selected by the optimal solution,
is divided equally among the agents approving such good.

We now study the properties of rule x�:

Proposition 2 (1) The rule x� satis�es e¢ ciency, symmetry, monotonicity, dummy, core
selection, independence of irrelevant goods, composition up, no advantageous merging, no
advantageous splitting, and maximum aspirations.
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(2) The rule x� does not satisfy securement and equal contributions.

The proof is in Appendix.

In the next theorem we give several axiomatic characterizations of the optimal rule.

Theorem 2 (1) x� is the unique rule satisfying core selection and no advantageous split-
ting.
(2) x� is the unique rule satisfying e¢ ciency, independence of irrelevant goods, compo-

sition up, and maximum aspirations.
(3) x� is the unique rule satisfying e¢ ciency, no advantageous splitting, and maximum

aspirations.
Besides, the properties used in the previous characterizations are independent.

The proof is in Appendix.

Remark 2 If we check the proof of (1) in Theorem 2 we realize that we can replace core
selection by e¢ ciency and individual rationality (for each problem P; each agent i 2 N
must receives at least vrP (i)):

4.2 The rule induced by the Shapley value

In this section we study a rule satisfying securement. We �ll the knapsack in the optimal
way and each agent receives the utility given by the Shapley value of the optimistic game
associated with the knapsack problem3. In this section we consider the set of all problems
P :We study the properties satis�ed by this rule and we give an axiomatic characterization.

The Shapley value of a game v (Shapley, 1953) is denoted by Sh (v) : For each i 2 N
we have that

Shi (v) =
X

S�Nnfig

s! (n� s� 1)!
n!

(v (S [ fig)� v (S)) :

Given P 2 P, let x� denote an optimal solution of P . We de�ne the optimistic
Shapley rule, denoted by Sho; as the rule indued by the Shapley value of the optimistic
game. Namely, Sh0 (P ) = (go; f o) where go (P ) = x� and f o (P ) = Sh (voP ) :

We now study the properties satis�ed by the optimistic Shapley rule.

3There are other papers where the it is studied the Shapley value of the optimisitic game. For instance
Bergantiños and Vidal-Puga (2007b) study it in minimum cost spanning tree problems.
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Proposition 3 (1) The optimistic Shapley rule satis�es e¢ ciency, symmetry, monotonic-
ity, dummy, maximum aspirations, securement, and equal contributions.
(2) The optimistic Shapley rule does not satisfy core selection, independence of irrelevant

goods, composition up, no advantageous merging and no advantageous splitting.

The proof is in Appendix.
We now give a characterization of Sho:

Theorem 3 The optimistic Shapley rule is the unique rule satisfying e¢ ciency and equal
contributions.
Besides, the properties are independent.

The proof is in Appendix.

5 Final Remarks

We summarize the main �ndings of the paper and we conclude.
In the classical knapsack problem a single agent wants to �ll a knapsack with several

goods. Thus, this agent has to decide optimally the goods selected for the knapsack. This
problem has been studied in many papers of the operations research literature.
We consider the case with several agents with linear and heterogeneous preferences over

the goods. Now two issues should be considered. Firstly, as in the single agent case, we
select the goods that maximize the aggregated utility of all agents. Secondly, we divide the
aggregated utility generated by the selected knapsack among the agents. As far as we know
the second issue has been studied in very few papers (including this one).
We assign to each knapsack problem three cooperative games. The pessimistic game

has been already studied in the literature. The optimistic and the realistic game have been
introduced in this paper. The pessimistic and the realistic have a non-empty core but the
optimistic could have an empty core.
We also consider two rules. The �rst one is based on the optimal solution of the knapsack

problem. The second one is the Shapley value of the optimistic game. We o¤er axiomatic
characterizations of both rules. The main advantage of the �rst one is that it is always in
the core of the realistic and the pessimistic games. The main disadvantage is that it could
be rather unfair and some agents could get nothing. The rule based on the Shapley value is
not so unfair because it guarantees to each agent a minimal utility. The main disadvantage
is that it could be outside of the core of the pessimistic game.

Since few papers have been studied this problem there are many things that could be
considered. We give a brief list.
In this paper we have studied the Shapley value of the optimistic value. We can also

consider the Shapley value of the pessimistic and the realistic game. This is not the objective
of this paper but some things can be said. Let P be such that N = f1; 2; 3g; M = fa; b; cg,
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W = 1, wa = wb = wc = 1: p1a = x; p1b = p1c = 0, p2b = p3b = 1; p2a = p2c = p3a = p3c = 0:
Assume that x is small enough. Then, Sh1 (vp) = Sh1 (vr) = 2

3
> MA1 (P ) = x: Thus, the

Shapley value of the realistic game and the Shapley value of the pessimistic game do not
satisfy maximum aspirations.
Instead of studying the Shapley value, we can consider the nucleolus of some of the

games.
We have associated to each knapsack problem a cooperative game. What happens if

we associate a bankruptcy problem. The classical bankruptcy rules produce interesting
allocations in this setting?

6 Appendix: Proofs of the results

Proof of Proposition 2. (1) It is obvious that x� satis�es ef; sym; dum; iig; and ma:
We now prove that x� satis�es cu:We know that there exists s 2 N such that x�j (P ) = 1

for all j < s; 0 < x�s (P ) � 1; and x�j (P ) = 0 for all j > s: Let P andW1 � W: Then, it exists
t � s such that x�j (P (W1)) = 1 for all j < t; 0 < x�t (P (W1)) � 1; and x�j (P (W1)) = 0 for
all j > t:
Let x = x� (P (W1)) : Assume that xt < 1 and t < s (the other cases are similar

and we omit it). Then Mx = ft; :::;mg ; (wx)t = wt(1 � xt), (wx)j = wj for all j > t;

(pix)t = p
i
t(1� xt), (pix)j = pij for each i 2 N; for all j > t. Thus,

(px)t
(wx)t

=
pt(1� xt)
wt(1� xt)

=
pt
wt
>
pt�1
wt�1

=
(px)t�1
(wx)t�1

>

> ::: >
pm
wm

=
(px)m
(wx)m

:

It is obvious that, x�j (P ) = x
�
j (P (W1)) if j =2Mx: Now if j 2Mx; we will prove

x�j (P ) = x
�
j (P (W1)) + x

�
j(P (W �W1; x))(1� x�j (P (W1))):

We consider several cases.
Case 1: w1+:::+wj � W: Then x�j (P ) = 1: As; w1+:::+wtxt = W1, (wx)t+wt+1:::+wj �

W �W1: Then,
x�j (P (W �W1; x)) = 1.

Hence,

x�j (P ) = 1 = x
�
j (P (W1)) + x

�
j (P (W �W1; x)) (1� x�1j (P (W1)))

Case 2: w1+:::+wj > W: Since j 2Mx; w1+:::+wj�1 < W: Then, w1+:::+wjx�j (P ) =W
and w1 + :::+ wtx�t (P (W1)) = W1: We consider two cases.
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Case 2.1: j = t: Then,

W �W1 = wj
�
x�j (P )� x�j (P (W1))

�
:

Since W �W1 = (wx)j x
�
j (P (W �W1; x)) and (wx)j = wj

�
1� x�j (P (W1))

�
we have

that

x�j (P (W �W1; x)) =
W �W1

wj
�
1� x�j (P (W1))

�
=

wj
�
x�j (P )� x�j (P (W1))

�
wj
�
1� x�j (P (W1))

�
:

Then,
x�j (P ) = x

�
j (P (W1)) + x

�
j (P (W �W1; x))

�
1� x�j (P (W1))

�
:

Case 2.2: j > t: Then,

(wx)t + wt+1:::+ x
�
j (P )wj = W �W1:

Hence,
x�j (P ) = x

�
j (P (W �W1; x)) :

Now, as x�1j (P (W1)) = 0;

x�j (P ) = x
�1
j (P (W1)) + x

�
j (P (W �W1; x)) (1� x�j (P (W1)))

Let f � be the function f associated with x�: It is straightforward to see that or all i 2 N;

f �i (P ) = f
�
i (P (W1)) + f

�
i (P (W �W1; x)) :

Then x� satis�es cu:
By Proposition 1, x� satis�es core selection.
Let P and P 0 be as in the de�nition of nam and nas: Since pj = p0j for all j 2 M;

x�(P ) = x�(P 0); and

f �i (P
0) +

P
k2N 0nN

f �k (P
0) =

P
j2M

p0ij f
�
j (P

0) +
P
j2M

P
k2N 0nN

p0kj f
�
j (P

0)

=
P
j2M

P
k2N 0nN

(p0ij + p
0k
j )f

�
j (P

0)

=
P
j2M

pijf
�
j (P )

= f �i (P );

we deduce that x� satis�es nam and nas:
(2) Let P be such that N = f1; 2g ; M = fa; bg ; W = 1; wa = wb = 1; p

1
a = 1; p

2
b = 0:9

and p1b = p2a = 0: Now vo (1) = 1; vo (2) = 0:9; and vo (1; 2) = 1. Thus, x� (P ) = (1; 0) ;
f � (P ) = (f �1 (P ); f

�
1 (P )) = (1; 0) ; SE2 (P ) = 0:45; x�

�
P f1g

�
= 1; and x�

�
P f2g

�
= 0:9:

Thus, x� does not satisfy se and ec:
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Proof of Theorem 2. (1) By Proposition 2, x� satis�es both properties.
We now prove the uniqueness. Let � = (g; f) be a rule satisfying cs and nas:
Given a problem P; we know that there exists s 2 N such that x�j (P ) = 1 for all j < s;

0 < x�s (P ) � 1; and x�j (P ) = 0 for all j > s and

p1
w1
> ::: >

ps
ws
>
ps+1
ws+1

:::

Let i 2 N: We can �nd hi 2 N large enough such that

(1� 1
hi
)pi1 +

P
k2N : k 6=i

pk1

w1
> ::: >

(1� 1
hi
)pis +

P
k2N : k 6=i

pks

ws
>

(1� 1
hi
)pis+1 +

P
k2N : k 6=i

pks+1

ws+1
:::

(4)
Let N � N 0 be such that jN 0nN j = hi�1:We consider P 0 = (N 0;M;W;w; p0) such that

p0i = pi

hi
; p0k = pi

hi
for all k 2 N 0nN and p0k = pk for all k 2 Nnfig: By nas;

fi (P ) � fi (P 0) +
X

k2N 0nN

fk (P
0) : (5)

Furthermore, by (4),

vrP 0(i) =
ui (x

�(P ))

hi
and vrP 0(k) =

ui (x
�(P ))

hi
for all k 2 N 0nN:

By cs;

fi (P
0) � u1 (x

�(P ))

hi
and fk (P 0) �

u1 (x
�(P ))

hi
for all k 2 N 0nN:

By (5),
fi (P ) � ui (x�(P )) : (6)

Since x� satis�es ef and (6);

fi (P ) = ui (x
�(P )) for all i 2 N:

(2) By Proposition 2, x� satis�es the four properties.
We now prove the uniqueness. Let � = (g; f) be a rule satisfying the four properties.

Since � satis�es ef , g (P ) = x�:
Let s be such that gj (P ) = 1 for all j < s; 0 < gs (P ) � 1; and gj (P ) = 0 for all j > s:
We take W1 = w1: By ef;

gj (P (w1)) =

�
1 if j = 1
0 otherwise
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Let x = g (P (w1)), then x1 = 1, xj = 0 for all j 2Mnf1g and

Mx = fj 2M : j � 2g ;
(wx)j = wj for each j 2Mx; and

(px)
i
j = pij for each i 2 N and j 2Mx

by cu;

gj (P ) =

�
gj (P (w1)) for all j =2Mx

gjP (W � w1; x) for all j 2Mx
,

fi (P ) = fi (P (w1)) + fi (P (W � w1; x)) for all i 2 N:

By iig
� (P (w1)) = �

�
P (w1)

f1g
�
:

For each i 2 N , MAi
�
P (w1)

f1g
�
= pi1: By ma; fi

�
P (w1)

f1g
�
� pi1 for each i 2 N: By

ef ,
P
i2N

fi

�
P (w1)

f1g
�
=
P
i2N

pi1: Thus,

fi (P (w1)) = fi

�
P (w1)

f1g
�
= pi1 for each i 2 N:

We now apply cu to problem P (W � w1; g (P (w1))) by takingW1 = w2: Let us make an
abuse of notation and denote by P (w2) the �rst problem given by cu and by P (W � w1 � w2)
the second one. Using arguments similar to those used for P (w1) we can deduce that

gj (P (w2)) =

�
1 if j = 2
0 otherwise

fi (P (w2)) = pi2 for each i 2 N:

If we continue to apply cu we obtain that

gj (P ) =
s�1X
j=1

gj (P (wj)) + gj

 
P

 
W �

s�1X
j=1

wj

!!
for all j 2M and

fi (P ) =
s�1X
j=1

fi (P (wj)) + fi

 
P

 
W �

s�1X
j=1

wj

!!
for all i 2 N;

where for each j = 1; :::; s� 1;

gj0 (P (wj)) =

�
1 if j0 = j
0 otherwise

fi (P (wj)) = pij for each i 2 N:
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and

gj

 
P

 
W �

s�1X
j=1

wj

!!
=

�
gs (P ) if j = s
0 otherwise

fi

 
P

 
W �

s�1X
j=1

wj

!!
= pisgs (P ) for each i 2 N:

Since g (P ) = x�, for each i 2 N;

fi (P ) =

s�1X
j=1

fi (P (wj)) + fi

 
P

 
W �

s�1X
j=1

wj

!!

=

s�1X
j=1

pij + p
i
sgs (P ) =

s�1X
j=1

pijx
�
j (P ) + p

i
sx
�
s (P )

= ui (x
�) :

(3) By Proposition 2, x� satis�es the properties.
We now prove the uniqueness by induction on n; the number of agents. Let � = (g; f)

be a rule satisfying ef; ma and nas:
When n = 1; by ef; g (P ) = x� and f1 (P ) = u1 (x�) :
We assume that N = f1; 2g: Given a problem P; let s be as in the de�nition of the

optimal solution x� given by (3). Since P 2 P�;

p11 + p
2
1

w1
> ::: >

p1s + p
2
s

ws
>
p1s+1 + p

2
s+1

ws+1
:::

Now, let d1 2 N be such that

p11 + (1� 1
d1
)p21

w1
> ::: >

p1s + (1� 1
d1
)p2s

ws
>
p1s+1 + (1� 1

d1
)p2s+1

ws+1
::: (7)

Let N � N 0 be such that jN 0nN j = d1�1:We consider P 0 = (N 0;M;W;w; p0) such that
p01 = p1; p02 = p2

d1
and p0k = p2

d1
for all k 2 N 0nN: By nas;

f2 (P
0) +

X
k2N 0nN

fk (P
0) � f2 (P ) : (8)

By ef;
f1 (P ) � f1 (P 0) : (9)

Now, let P 00 = (N;M;W;w; p00) such that p001 = p01 +
P

k2N 0nN
p0k and p002 = p02 = p2

d1
:

Notice that P 0 is obtained from P 00 when agent 1 in P 00 splits in agents f1g [ (N 0nN) :
By nas;

f1 (P
0) +

X
k2N 0nN

fk (P
0) � f1 (P 00) : (10)
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By (7),
MA1(P

00) = u1 (x
�(P 00)) :

By ma;

f1 (P
00) �MA1(P 00) = u1 (x

�(P 00))
=
P
j2M

p001j x
�
j(P

00)

=
P
j2M

p1jx
�
j(P

00) +
P
j2M

P
k2N 0nN

p0kj x
�
j(P

00)

=
P
j2M

p1jx
�
j(P

0) +
P
j2M

P
k2N 0nN

p0kj x
�
j(P

0)

= u1 (x
�(P 0)) +

P
k2N 0nN

uk (x
�(P 0)) :

(11)

By (10) and (11),

f1 (P
0) +

X
k2N 0nN

fk (P
0) � u1 (x�(P 0)) +

X
k2N 0nN

uk (x
�(P 0)) : (12)

By (12) and ef ,
f2 (P

0) � u2 (x�(P 0)) : (13)

Similarly, if we take �k 2 N 0nN and consider P 000 = (N 000;M;W;w; p000) such that N 000 =

f1; �kg and p0001 = p01 + p02 +
P

k2N 0n(N[f�kg)
p0k and p000�k = p02 = p2

d1
; it can be proved that

f�k (P
0) � u�k (x�(P 0)) : (14)

Then,
fk (P

0) � uk (x�(P 0)) for all k 2 N 0nN: (15)

By (12) and (15),
f1 (P

0) � u1 (x�(P 0)) : (16)

By (9) and since x� (P ) = x� (P 0) and p1 = p01;

f1 (P ) � u1 (x�(P )) :

Similarly it can be proved that

f2 (P ) � u2 (x�(P )) :

By ef;
fi (P ) = ui (x

�(P )) for all i 2 N:
We now consider the case n � 3: Assume that the result is true when we have less than

n agents and we prove it for n:
We �rst prove that for any P 2 P� and any pair of agents i; k 2 N (i 6= k)

fi (P ) + fk (P ) � ui (x�(P )) + uk (x�(P )) : (17)
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We de�ne P+ = (N+;M;W;w; p+) such that N+ = Nnfkg and p+i = pi + pk and
p+t = pt for all t 2 N+n fig : By induction hypothesis

ft
�
P+
�
= ut

�
x�(P+)

�
for all t 2 N+: (18)

By nas;
fi (P ) + fk (P ) � fi

�
P+
�
: (19)

By (18) and (19)

fi (P ) + fk (P ) � ui
�
x�(P+)

�
= ui (x

�(P )) + uk (x
�(P )) : (20)

Fix i 2 N; by (17)P
k2Nnfig

[fi (P ) + fk (P )] �
P

k2Nnfig
[ui (x

�(P )) + uk (x
�(P ))],

(n� 1)fi (P ) +
P

k2Nnfig
fk (P ) � (n� 1)ui (x�(P )) +

P
k2Nnfig

uk (x
�(P )),

(n� 2)fi (P ) +
P
k2N

fk (P ) � (n� 2)ui (x�(P )) +
P
k2N

uk (x
�(P )) :

(21)

By ef and since n � 3;
fi (P ) � ui (x�(P )) : (22)

Since (22) holds for all i 2 N and ef;

fi (P ) = ui (x
�(P )) :

We now prove that the properties used in the previous characterization are independent.
(1) Let �P be the problem in Example (2). Let �� =

�
g�; f �

�
be such that g� (P ) = x�

for each problem P . Besides, f � (P ) = u (x�(P )) if P 6= �P and f �
�
�P
�
= (0:7; 2; 2) : This

rule satis�es cs; but fails nas:
Let � = (g; f) be such that g (P ) = x� for each problem P: Besides, the total utility

given by each good j is divided among the agents proportionally to the utility that each
agent gives to the goods in x�: Namely, given i 2 N and j 2M we de�ne:

yij =

P
x�k>0

pikP
i2N

P
x�k>0

pik
pjx

�
j

fi (P ) =
X
j2M

yij:

This rules satis�es nas but fails cs:
(2) Let f 0 be the rule that selects no good and allocates 0 to each agent. This rule

satis�es ma; iig and cu but fails ef:
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Let �� = (g�; f�) be such that g� (P ) = x� for each problem P: Besides, the total utility
given by each good is divided equally among the agents given positive utility to such good.
Namely, given i 2 N and j 2M we de�ne:

Nj =
�
i 2 N : pij > 0

	
:

yij =

� 1
jNj jpjx

�
j if i 2 Nj

0 otherwise

f�i (P ) =
X
j2M

yij:

This rule satis�es ef; iig and cu but fails ma:
Let �� =

�
g�; f�

�
be such that g� (P ) = x� for each problem P: Besides, the total utility

is divided as equal as possible among the agents in such a way that no agent gets more
than his maximum aspiration. Namely, given a problem P and i 2 N;

f�i (P ) = min fMAi (P ) ; �g where
X
i2N

f�i (P ) =
X
i2N

ui (x
�) :

This rule satis�es ef; ma; and cu but fails iig:
Let f� = (g�; f�) be such that g� (P ) = x� for each problem P: Given i 2 N and j 2M

we de�ne:

M� =
�
j 2M : x�j > 0

	
;

FS� (P ) =

(
x :
X
j2M

wjxj = W and xj = 0 if j =2M�

)
yi = max

x2FS�(P )
ui (x)

Now, suppose that N = fi1; :::ing such that yi1 � yi2 ::: � yin : Notice that ui (x�) � yi �
MAi (P ) for all i 2 N: We de�ne

f�i1 (P ) = minfyi1 ;
X
i2N

ui (x
�)g:

f�i2 (P ) = minfyi2 ;
X
i2N

ui (x
�)� f�i1 (P )g:

...

f�ih (P ) = minfyih ;
X
i2N

ui (x
�)�

h�1X
r=1

f�ir (P )g:

...

f�in (P ) =
X
i2N

ui (x
�)�

n�1X
r=1

f�ir (P ) :
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This rule satis�es ef; ma; and iig but fails cu:
(3) �0 satis�es ma and nas but fails ef:
�� satis�es ef and ma but fails nas:
� satis�es ef and nas but fails ma:

Proof of Proposition 3. (1) It is obvious that Sho satis�es ef:
sym: Assume that agents i and j are symmetric in P: Thus, they are symmetric in the

optimistic game vo: Since the Shapley value satis�es symmetry, both agents receive the
same. Thus Sho satis�es sym:
mon. Let P , P 0 and i as in the de�nition of mon: Since the Shapley value is an average

of marginal contributions, it is enough to prove that for each S � Nn fig ; we have that

voP (S [ fig)� voP (S) � voP 0 (S [ fig)� voP 0 (S) :

Since voP 0 (S) = voP (S) it is enough to prove that v
o
P (S [ fig) � voP 0 (S [ fig) : Notice

that FS (P ) = FS (P 0) : Let y 2 FS (P ) be such that voP (S [ fig) =
P

k2S[fig

P
j2M

pkjyj: Now,

voP (S [ fig) =
X

k2S[fig

X
j2M

pkjyj �
X

k2S[fig

X
j2M

p0kj yj

� max
x2FS(P 0)

X
k2S[fig

X
j2M

p0kj xj = v
o
P 0(S [ fig):

dum: Assume that agent i is a dummy in P: Thus, agent i is a dummy in the optimistic
game vo: Since the Shapley value satis�es dummy, agent i receives nothing. Thus Sho

satis�es dum:
ma: Since the Shapley value is an average of marginal contributions, it is enough to prove

that for each problem P; each i 2 N; and each S � Nn fig we have that voP (S [ fig) �
voP (S) �MAi (P ) :
Let y; y0 2 FS (P ) be such that voP (S[fig) =

P
k2S[fig

P
j2M

pkjyj and v
o
P (S) =

P
k2S

P
j2M

pkjy
0
j:

Now,

voP (S [ fig)� voP (S) =
X

k2S[fig

X
j2M

pkjyj �
X
k2S

X
j2M

pkjy
0
j

=
X
j2M

pijyj +
X
k2S

X
j2M

pkjyj �
X
k2S

X
j2M

pkjy
0
j

By de�nition of y0;
P
k2S

P
j2M

pkjyj �
P
k2S

P
j2M

pkjy
0
j � 0: Then,

voP (S [ fig)� voP (S) �
X
j2M

pijyj � max
x2FS(P )

X
j2M

pijxj =MAi (P ) :

se: Let P be a problem and i 2 N: Since vo (i) = SEi (P )n and vo (S [ i) � vo (S) we
have that Sho2i (P ) � SEi (P ) :
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ec: Let P be a problem and i; k 2 N: Let (N; voP ) be the corresponding optimistic game.
Myerson (1980) proved that the Shapley value satis�es equal contributions in TU games.
Then,

Shi (N; v
o
P )� Shi (Nn fkg ; voP ) = Shk (N; voP )� Shk (Nn fig ; voP ) :

Since f oi (P ) = Shi (N; v
o
P ) and f

o
k (P ) = Shk (N; v

o
P ) ; it is enough to prove that

f oi
�
PNnfkg

�
= Shi (Nn fkg ; voP ) and f ok

�
PNnfig

�
= Shk (Nn fig ; voP ) :We prove that f oi

�
PNnfkg

�
=

Shi (Nn fkg ; voP ) (the other case is similar and we omit it). Since f oi
�
PNnfkg

�
= Shi

�
Nn fkg ; vo

PNnfkg

�
,

it is enough to prove that for each T � Nn fkg ; voP (T ) = voPNnfkg (T ) : Notice that,

FS (P ) =

(
x :
X
j2M

wjxj � W and xj 2 [0; 1]8 j 2M
)
= FS

�
PNnfkg

�
:

Then,

voP (T ) = max
x2FS(P )

X
i2T

ui (x) = max
x2FS(PNnfkg)

X
i2T

ui (x) = v
o
PNnfkg(S):

(2) Since Sho satis�es se and Proposition 1, we have that Sho does not satisfy cs:
It is obvious that Sho does not satisfy iig:
cu: Consider Example 1: Since vo (1) = p1a and v

o (S [ 1) = vo (S) when ? 6= S �
Nn f1g ; we have that f o1 (P ) = Sh1 (v

o) = 1
3
p1a: We take W1 = 1: Let x = f o1 (P (W1)) :

Since xb = 1 and xa = xc = 0

voP (W1)
(1) = p1a;

voP (W1)
(S [ f1g) = voP (W1)

(S) when ? 6= S � Nn f1g ;

Since xb = 1 and xa = xc = 0;

voP (W�W1;x)
(1) = p1a;

voP (W�W1;x)
(S [ f1g) = voP (W�W1;x)

(S) when ? 6= S � Nn f1g ;

we have that
Sh1

�
voP (W�W1;x)

�
= Sh1

�
voP (W1)

�
=
1

3
p1a:

Since,

f o1 (P (W1)) + f
o
1 (P (W �W1; x)) =

2

3
p1a;

we deduce that Sho does not satis�es cu:
nas: It follows from Theorem 2 (3) and the fact that the Sho satis�es ef and ma:
nam: Let P be such that N = f1; 2; 3g, M = fa; b; cg, W = 1 and wj = 1 for all j 2M:

Besides the vector p satis�es the following conditions: p1a =
1
2
; p1b = 0; p1c = 1; p2a = 1;

p2b = 1, p
2
c = 0; p

3
a =

3
4
; p3b = 1 and p

3
c = 1: Thus,
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T voP (T )
f1g 1
f2g 1
f3g 1
f1; 2g 3

2

f1; 3g 2
f2; 3g 2
N 9

4

Then, f o (P ) = Sh (voP ) =
�
2
3
; 2
3
; 11
12

�
: Therefore, f o1 (P ) + f

o
2 (P ) =

4
3
:

Assume that agents 1 and 2 merge in agent 1. Now N+ = f1; 3g, p+1 = p1 + p2; and
p+3 = p3: Then,

T voP+ (T )
f1g 3

2

f3g 1
N+ 9

4

Then f o (P+) = Sh
�
voP+
�
=
�
11
8
; 7
8

�
:Then,

f o1 (P ) + f
o
2 (P ) =

4

3
<
11

8
= f o1

�
P+
�
;

which implies Sho does not satisfy nam:

Proof of Theorem 3. By Proposition 3 we know that Sho satis�es ef and ec:
We now prove the uniqueness. This proof is quite standard in the literature. Let � be

a rule satisfying ef and ec: We prove it by induction on n:
When n = 1; by ef; g (P ) = x� and f1 (P ) = u1 (x

�) : Assume that the result is true
when we have less than n agents and we prove it for n: By ec; for all i 2 Nn f1g ;

fi (P )� fi
�
PNnf1g

�
= f1 (P )� f1

�
PNnfig

�
)

fi (P )� f1 (P ) = fi
�
PNnf1g

�
� f1

�
PNnfig

�
)X

i2Nnf1g

fi (P )� (n� 1) f1 (P ) =
X

i2Nnf1g

�
fi
�
PNnf1g

�
� f1

�
PNnfig

��
)

X
i2N

fi (P )� nf1 (P ) =
X

i2Nnf1g

�
fi
�
PNnf1g

�
� f1

�
PNnfig

��
:

Since � satis�es ef;
P
i2N

fi (P ) =
P
i2N

ui (x
�) :

By induction hypothesis,
P

i2Nnf1g

�
fi
�
PNnf1g

�
� f1

�
PNnfig

��
is known. Then,

f1 (P ) =

P
i2N

ui (x
�)�

P
i2Nnf1g

�
fi
�
PNnf1g

�
� f1

�
PNnfig

��
n

:
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Thus, f1 (P ) is uniquely determined. Let i 2 Nn f1g : By ec;

fi (P ) = fi
�
PNnf1g

�
+ f1 (P )� f1

�
PNnfig

�
;

which means that fi (P ) is uniquely determined.
We now prove that the properties are independent.
�0; de�ned as in the proof of Theorem 2, satis�es ec but fails ef:
��, de�ned as in the proof of Theorem 2, satis�es ef but fails ec:
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